Both electric utilities and end users of electric power are becoming increasingly concerned about the quality of electric power. The term power quality has become one of the most prolific buzzwords in the power industry since the late 1980s. It is an umbrella concept for a multitude of individual types of power system disturbances. The issues that fall under this umbrella are not necessarily new. What is new is that engineers are now attempting to deal with these issues using a system approach rather than handling them as individual problems.
There are four major reasons for the increased concern:
1. Newer-generation load equipment, with microprocessor-based controls and power electronic devices, is more sensitive to power quality variations than was equipment used in the past.
2. The increasing emphasis on overall power system efficiency has resulted in continued growth in the application of devices such as high-efficiency, adjustable-speed motor drives and shunt capacitors for power factor correction to reduce losses. This is resulting in increasing harmonic levels on power systems and has many people concerned about the future impact on system capabilities.
3. End users have an increased awareness of power quality issues. Utility customers are becoming better informed about such issues as interruptions, sags, and switching transients and are challenging the utilities to improve the quality of power delivered.
4. Many things are now interconnected in a network. Integrated processes mean that the failure of any component has much more important consequences.
What Is Power Quality?
There can be completely different definitions for power quality, depending on one’s frame of reference. For example, a utility may define power quality as reliability and show statistics demonstrating that its system is 99.98 percent reliable. Criteria established by regulatory agencies are usually in this vein. Amanufacturer of load equipment may define power quality as those characteristics of the power supply that enable the equipment to work properly. These characteristics can be very different for different criteria. Power quality is ultimately a consumer driven issue, and the end user’s point of reference takes precedence. Therefore, the following definition of a power quality problem is :
Any power problem manifested in voltage, current, or frequency deviations that results in failure or misoperation of customer equipment.
There are many misunderstandings regarding the causes of power quality problems. The charts in Figure 1.1 show the results of one survey conducted by the Georgia Power Company in which both utility personnel and customers were polled about what causes power quality problems. While surveys of other market sectors might indicate different splits between the categories, these charts clearly illustrate one common theme that arises repeatedly in such surveys: The utility’s and customer’s perspectives are often much different. While both tend to blame about two-thirds of the events on natural phenomena (e.g., lightning), customers, much more frequently than utility personnel, think that the utility is at fault.
Figure 1.1 Results of a survey on the causes of power quality problems. (Courtesy of Georgia Power Co.) |
When there is a power problem with a piece of equipment, end users may be quick to complain to the utility of an “outage” or “glitch” that has caused the problem. However, the utility records may indicate no abnormal events on the feed to the customer. We recently investigated a case where the end-use equipment was knocked off line 30 times in 9 months, but there were only five operations on the utility substation breaker. It must be realized that there are many events resulting in end-user problems that never show up in the utility statistics. One example is capacitor switching, which is quite common and normal on the utility system, but can cause transient overvoltages that disrupt manufacturing machinery. Another example is a momentary fault elsewhere in the system that causes the voltage to sag briefly at the location of the customer in question. This might cause an adjustable-speed drive or a distributed generator to trip off, but the utility will have no indication that anything was amiss on the feeder unless it has a power quality monitor installed.
In addition to real power quality problems, there are also perceived power quality problems that may actually be related to hardware, software, or control system malfunctions. Electronic components can degrade over time due to repeated transient voltages and eventually fail due to a relatively low magnitude event. Thus, it is sometimes difficult to associate a failure with a specific cause. It is becoming more common that designers of control software for microprocessor-based equipment have an incomplete knowledge of how power systems operate and do not anticipate all types of malfunction events. Thus, a device can misbehave because of a deficiency in the embedded software. This is particularly common with early versions of new computer-controlled load equipment. One of the main objectives of this book is to educate utilities, end users, and equipment suppliers alike to reduce the frequency of malfunctions caused by software deficiencies.
In response to this growing concern for power quality, electric utilities have programs that help them respond to customer concerns. The philosophy of these programs ranges from reactive, where the utility responds to customer complaints, to proactive, where the utility is involved in educating the customer and promoting services that can help develop solutions to power quality problems. The regulatory issues facing utilities may play an important role in how their programs are structured. Since power quality problems often involve interactions between the supply system and the customer facility and equipment, regulators should make sure that distribution companies have incentives to work with customers and help customers solve these problems.
The economics involved in solving a power quality problem must also be included in the analysis. It is not always economical to eliminate power quality variations on the supply side. In many cases, the optimal solution to a problem may involve making a particular piece of sensitive equipment less sensitive to power quality variations. The level of power quality required is that level which will result in proper operation of the equipment at a particular facility.
Power quality, like quality in other goods and services, is difficult to quantify. There is no single accepted definition of quality power. There are standards for voltage and other technical criteria that may be measured, but the ultimate measure of power quality is determined by the
performance and productivity of end-user equipment. If the electric power is inadequate for those needs, then the “quality” is lacking.
Perhaps nothing has been more symbolic of a mismatch in the power delivery system and consumer technology than the “blinking clock” phenomenon. Clock designers created the blinking display of a digital clock to warn of possible incorrect time after loss of power and inad vertently created one of the first power quality monitors. It has made the homeowner aware that there are numerous minor disturbances occurring throughout the power delivery system that may have no ill effects other than to be detected by a clock. Many appliances now have a built-in clock, so the average household may have about a dozen clocks that must be reset when there is a brief interruption. Older-technology motor-driven clocks would simply lose a few seconds during minor disturbances and then promptly come back into synchronism.
Power Quality = Voltage Quality
The common term for describing the subject of this site is power quality; however, it is actually the quality of the voltage that is being addressed in most cases. Technically, in engineering terms, power is the rate of energy delivery and is proportional to the product of the voltage and current. It would be difficult to define the quality of this quantity in any meaningful manner. The power supply system can only control the quality of the voltage; it has no control over the currents that particular loads might draw. Therefore, the standards in the power quality area are devoted to maintaining the supply voltage within certain limits.
AC power systems are designed to operate at a sinusoidal voltage of a given frequency [typically 50 or 60 hertz (Hz)] and magnitude. Any significant deviation in the waveform magnitude, frequency, or purity is a potential power quality problem.
Of course, there is always a close relationship between voltage and current in any practical power system. Although the generators may provide a near-perfect sine-wave voltage, the current passing through the impedance of the system can cause a variety of disturbances to the voltage.
For example,
1. The current resulting from a short circuit causes the voltage to sag or disappear completely, as the case may be.
2. Currents from lightning strokes passing through the power system cause high-impulse voltages that frequently flash over insulation and lead to other phenomena, such as short circuits.
3. Distorted currents from harmonic-producing loads also distort the voltage as they pass through the system impedance. Thus a distorted voltage is presented to other end users.
Therefore, while it is the voltage with which we are ultimately concerned, we must also address phenomena in the current to understand the basis of many power quality problems.
Why Are We Concerned about Power Quality?
The ultimate reason that we are interested in power quality is economic value. There are economic impacts on utilities, their customers, and suppliers of load equipment.
The quality of power can have a direct economic impact on many industrial consumers. There has recently been a great emphasis on revitalizing industry with more automation and more modern equipment. This usually means electronically controlled, energy-efficient equipment that is often much more sensitive to deviations in the supply voltage than were its electromechanical predecessors. Thus, like the blinking clock in residences, industrial customers are now more acutely aware of minor disturbances in the power system. There is big money associated with these disturbances. It is not uncommon for a single, commonplace, momentary utility breaker operation to result in a $10,000 loss to an average-sized industrial concern by shutting down a production line that requires 4 hours to restart. In the semiconductor manufacturing industry, the economic impacts associated with equipment sensitivity to momentary voltage sags resulted in the development of a whole new standard for equipment ride-through (SEMI Standard F-47, Specification for Semiconductor Process Equipment Voltage Sag Immunity).
The electric utility is concerned about power quality issues as well. Meeting customer expectations and maintaining customer confidence are strong motivators. With today’s movement toward deregulation and competition between utilities, they are more important than ever. The loss of a disgruntled customer to a competing power supplier can have a very significant impact financially on a utility.
Besides the obvious financial impacts on both utilities and industrial customers, there are numerous indirect and intangible costs associated with power quality problems. Residential customers typically do not suffer direct financial loss or the inability to earn income as a result of most power quality problems, but they can be a potent force when they perceive that the utility is providing poor service. Home computer usage has increased considerably in the last few years and more transactions are being done over the Internet. Users become more sensitive to interruptions when they are reliant on this technology. The sheer number of complaints require utilities to provide staffing to handle them. Also, public interest groups frequently intervene with public service commissions, requiring the utilities to expend financial resources on lawyers, consultants, studies, and the like to counter the intervention. While all this is certainly not the result of power quality problems, a reputation for providing poor quality service does not help matters.
Load equipment suppliers generally find themselves in a very competitive market with most customers buying on lowest cost. Thus, there is a general disincentive to add features to the equipment to withstand common disturbances unless the customer specifies otherwise. Many manufacturers are also unaware of the types of disturbances that can occur on power systems. The primary responsibility for correcting inadequacies in load equipment ultimately lies with the end user who must purchase and operate it. Specifications must include power performance criteria. Since many end users are also unaware of the pitfalls, one useful service that utilities can provide is dissemination of information on power quality and the requirements of load equipment to properly operate in the real world. For instance, the SEMI F-47 standard previously referenced was developed through joint task forces consisting of semiconductor industry and utility engineers working together.
The Power Quality Evaluation Procedure
Power quality problems encompass a wide range of different phenomena, as described in Chapter 2 (Terms and Definitions). Each of these phenomena may have a variety of different causes and different solutions that can be used to improve the power quality and equipment performance. However, it is useful to look at the general steps that are associated with investigating many of these problems, especially if the steps can involve interaction between the utility supply system and the customer facility. Figure 1.2 gives some general steps that are often required in a power quality investigation, along with the major considerations that must be addressed at each step.
Figure 1.2 Basic steps involved in a power quality evaluation. |
The general procedure must also consider whether the evaluation involves an existing power quality problem or one that could result from a new design or from proposed changes to the system. Measurements will play an important role for almost any power quality concern. This is the primary method of characterizing the problem or the existing system that is being evaluated. When performing the measurements, it is important to record impacts of the power quality variations at the same time so that problems can be correlated with possible causes.
Solutions need to be evaluated using a system perspective, and both the economics and the technical limitations must be considered. Possible solutions are identified at all levels of the system from utility supply to the end-use equipment being affected. Solutions that are not technically viable get thrown out, and the rest of the alternatives are compared on an economic basis. The optimum solution will depend on the type of problem, the number of end users being impacted, and the possible solutions.