This category encompasses the IEC category of voltage dips and short interruptions. Each type of variation can be designated as instantaneous, momentary, or temporary, depending on its duration as defined in Table 2.2.
Short-duration voltage variations are caused by fault conditions, the energization of large loads which require high starting currents, or intermittent loose connections in power wiring. Depending on the fault location and the system conditions, the fault can cause either tempo rary voltage drops (sags), voltage rises (swells), or a complete loss of voltage (interruptions). The fault condition can be close to or remote from the point of interest. In either case, the impact on the voltage during the actual fault condition is of the short-duration variation until protective devices operate to clear the fault.
An interruption occurs when the supply voltage or load current decreases to less than 0.1 pu for a period of time not exceeding 1 min. Interruptions can be the result of power system faults, equipment failures, and control malfunctions. The interruptions are measured by their duration since the voltage magnitude is always less than 10 percent of nominal. The duration of an interruption due to a fault on the utility system is determined by the operating time of utility protective devices. Instantaneous reclosing generally will limit the interruption caused by a nonpermanent fault to less than 30 cycles. Delayed reclosing of the protective device may cause a momentary or temporary interruption. The duration of an interruption due to equipment malfunctions or loose connections can be irregular.
Some interruptions may be preceded by a voltage sag when these interruptions are due to faults on the source system. The voltage sag occurs between the time a fault initiates and the protective device operates. Figure 2.5 shows such a momentary interruption during which voltage on one phase sags to about 20 percent for about 3 cycles and then drops to zero for about 1.8 s until the recloser closes back in.
Sags (dips)
A sag is a decrease to between 0.1 and 0.9 pu in rms voltage or current at the power frequency for durations from 0.5 cycle to 1 min.
The power quality community has used the term sag for many years to describe a short-duration voltage decrease. Although the term has not been formally defined, it has been increasingly accepted and used by utilities, manufacturers, and end users. The IEC definition for this phenomenon is dip. The two terms are considered interchangeable, with sag being the preferred synonym in the U.S. power quality community.
Terminology used to describe the magnitude of a voltage sag is often confusing. A “20 percent sag” can refer to a sag which results in a voltage of 0.8 or 0.2 pu. The preferred terminology would be one that leaves no doubt as to the resulting voltage level: “a sag to 0.8 pu” or “a sagwhose magnitude was 20 percent.” When not specified otherwise, a 20 percent sag will be considered an event during which the rms voltage decreased by 20 percent to 0.8 pu. The nominal, or base, voltage level should also be specified.
Voltage sags are usually associated with system faults but can also be caused by energization of heavy loads or starting of large motors. Figure 2.6 shows a typical voltage sag that can be associated with a single-line-to-ground (SLG) fault on another feeder from the same substation. An 80 percent sag exists for about 3 cycles until the substation breaker is able to interrupt the fault current. Typical fault clearing times range from 3 to 30 cycles, depending on the fault current magnitude and the type of overcurrent protection. Figure 2.7 illustrates the effect of a large motor starting. An induction motor will draw 6 to 10 times its full load current during start-up. If the current magnitude is large relative to the available fault current in the system at that point, the resulting voltage sag can be significant. In this case, the voltage sags immediately to 80 percent and then gradually returns to normal in about 3 s. Note the difference in time frame between this and sags due to utility system faults.
Until recent efforts, the duration of sag events has not been clearly defined. Typical sag duration is defined in some publications as ranging from 2 ms (about one-tenth of a cycle) to a couple of minutes. Undervoltages that last less than one-half cycle cannot be characterized effectively by a change in the rms value of the fundamental frequency value. Therefore, these events are considered transients. Undervoltages that last longer than 1 min can typically be controlled by voltage regulation equipment and may be associated with causes other than system faults. Therefore, these are classified as long-duration variations.
Sag durations are subdivided here into three categories—instantaneous, momentary, and temporary—which coincide with the three categories of interruptions and swells. These durations are intended to correspond to typical utility protective device operation times as well as duration divisions recommended by international technical organizations.
what about swells???????
ReplyDeleteI know this is a long way off, but good to know that everything in this blog is directly from the book "Electrical Power Systems Quality" by Roger C. Dugan, et al. In the book, the very next paragraph is about swells. Don't know why they didn't include it here.
DeleteGood description, For other Electrical related topics reffer http://top10electrical.blogspot.com/
ReplyDelete